Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463997

RESUMO

Sex chromosomes are critical elements of sexual reproduction in many animal and plant taxa, however they show incredible diversity and rapid turnover even within clades. Here, using a chromosome-level assembly generated with long read sequencing, we report the first evidence for genetic sex determination in cephalopods. We have uncovered a sex chromosome in California two-spot octopus (Octopus bimaculoides) in which males/females show ZZ/ZO karyotypes respectively. We show that the octopus Z chromosome is an evolutionary outlier with respect to divergence and repetitive element content as compared to other chromosomes and that it is present in all coleoid cephalopods that we have examined. Our results suggest that the cephalopod Z chromosome originated between 455 and 248 million years ago and has been conserved to the present, making it the among the oldest conserved animal sex chromosomes known.

2.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958822

RESUMO

The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Transdução de Sinais , Humanos , Camundongos , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Aprendizagem , Encéfalo/metabolismo
3.
Nat Neurosci ; 26(12): 2192-2202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996524

RESUMO

Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.


Assuntos
Callithrix , Fixação Ocular , Animais , Camundongos , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual , Movimentos da Cabeça/fisiologia
4.
Curr Biol ; 33(20): R1106-R1118, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37875093

RESUMO

Coleoid cephalopods (octopuses, squids and cuttlefishes) are the only branch of the animal kingdom outside of vertebrates to have evolved both a large brain and camera-type eyes. They are highly dependent on vision, with the majority of their brain devoted to visual processing. Their excellent vision supports a range of advanced visually guided behaviors, from navigation and prey capture, to the ability to camouflage based on their surroundings. However, their brain organization is radically different from that of vertebrates, as well as other invertebrates, providing a unique opportunity to explore how a novel neural architecture for vision is organized and functions. Relatively few studies have examined the cephalopod visual system using current neuroscience approaches, to the extent that there has not even been a measurement of single-cell receptive fields in their central visual system. Therefore, there remains a tremendous amount that is unknown about the neural basis of vision in these extraordinary animals. Here, we review the existing knowledge of the organization and function of the cephalopod visual system to provide a framework for examining the neural circuits and computational mechanisms mediating their remarkable visual capabilities.


Assuntos
Octopodiformes , Percepção Visual , Animais , Encéfalo , Decapodiformes , Visão Ocular
5.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398256

RESUMO

Despite their immense success as a model of macaque visual cortex, deep convolutional neural networks (CNNs) have struggled to predict activity in visual cortex of the mouse, which is thought to be strongly dependent on the animal's behavioral state. Furthermore, most computational models focus on predicting neural responses to static images presented under head fixation, which are dramatically different from the dynamic, continuous visual stimuli that arise during movement in the real world. Consequently, it is still unknown how natural visual input and different behavioral variables may integrate over time to generate responses in primary visual cortex (V1). To address this, we introduce a multimodal recurrent neural network that integrates gaze-contingent visual input with behavioral and temporal dynamics to explain V1 activity in freely moving mice. We show that the model achieves state-of-the-art predictions of V1 activity during free exploration and demonstrate the importance of each component in an extensive ablation study. Analyzing our model using maximally activating stimuli and saliency maps, we reveal new insights into cortical function, including the prevalence of mixed selectivity for behavioral variables in mouse V1. In summary, our model offers a comprehensive deep-learning framework for exploring the computational principles underlying V1 neurons in freely-moving animals engaged in natural behavior.

6.
Curr Biol ; 33(13): 2784-2793.e3, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343556

RESUMO

Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from those of other highly visual species, such as vertebrates; therefore, the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, as there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. An examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods.


Assuntos
Octopodiformes , Animais , Olho , Percepção Visual , Sistema Nervoso , Vias Visuais/fisiologia
7.
Curr Biol ; 33(13): 2774-2783.e5, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343558

RESUMO

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.


Assuntos
Sistemas CRISPR-Cas , Decapodiformes , Animais , Decapodiformes/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes , Genoma
8.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824726

RESUMO

Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from that of other highly visual species, such as vertebrates, and therefore the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, since there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. Examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods. Highlights: The functional organization and visual response properties of the cephalopod visual system are largely unknownUsing calcium imaging, we performed mapping of visual responses in the octopus optic lobeVisual responses demonstrate localized ON and OFF receptive fields with retinotopic organizationON/OFF pathways and size selectivity emerge across layers of the optic lobe and have distinct properties relative to other species.

9.
Curr Biol ; 32(23): 5031-5044.e4, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36318923

RESUMO

Cephalopods have a remarkable visual system, with a camera-type eye and high acuity vision that they use for a wide range of sophisticated visually driven behaviors. However, the cephalopod brain is organized dramatically differently from that of vertebrates and invertebrates, and beyond neuroanatomical descriptions, little is known regarding the cell types and molecular determinants of their visual system organization. Here, we present a comprehensive single-cell molecular atlas of the octopus optic lobe, which is the primary visual processing structure in the cephalopod brain. We combined single-cell RNA sequencing with RNA fluorescence in situ hybridization to both identify putative molecular cell types and determine their anatomical and spatial organization within the optic lobe. Our results reveal six major neuronal cell classes identified by neurotransmitter/neuropeptide usage, in addition to non-neuronal and immature neuronal populations. We find that additional markers divide these neuronal classes into subtypes with distinct anatomical localizations, revealing further diversity and a detailed laminar organization within the optic lobe. We also delineate the immature neurons within this continuously growing tissue into subtypes defined by evolutionarily conserved developmental genes as well as novel cephalopod- and octopus-specific genes. Together, these findings outline the organizational logic of the octopus visual system, based on functional determinants, laminar identity, and developmental markers/pathways. The resulting atlas presented here details the "parts list" for neural circuits used for vision in octopus, providing a platform for investigations into the development and function of the octopus visual system as well as the evolution of visual processing.


Assuntos
Hibridização in Situ Fluorescente
10.
Sci Rep ; 12(1): 17513, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266414

RESUMO

Understanding the impact of the geometry and material composition of electrodes on the survival and behavior of retinal cells is of importance for both fundamental cell studies and neuromodulation applications. We investigate how dissociated retinal cells from C57BL/6J mice interact with electrodes made of vertically-aligned carbon nanotubes grown on silicon dioxide substrates. We compare electrodes with different degrees of spatial confinement, specifically fractal and grid electrodes featuring connected and disconnected gaps between the electrodes, respectively. For both electrodes, we find that neuron processes predominantly accumulate on the electrode rather than the gap surfaces and that this behavior is strongest for the grid electrodes. However, the 'closed' character of the grid electrode gaps inhibits glia from covering the gap surfaces. This lack of glial coverage for the grids is expected to have long-term detrimental effects on neuronal survival and electrical activity. In contrast, the interconnected gaps within the fractal electrodes promote glial coverage. We describe the differing cell responses to the two electrodes and hypothesize that there is an optimal geometry that maximizes the positive response of both neurons and glia when interacting with electrodes.


Assuntos
Nanotubos de Carbono , Neurônios Retinianos , Animais , Camundongos , Nanotubos de Carbono/química , Fractais , Camundongos Endogâmicos C57BL , Eletrodos , Neuroglia , Dióxido de Silício
11.
Neuron ; 110(23): 3897-3906.e5, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36137549

RESUMO

Visual input during natural behavior is highly dependent on movements of the eyes and head, but how information about eye and head position is integrated with visual processing during free movement is unknown, as visual physiology is generally performed under head fixation. To address this, we performed single-unit electrophysiology in V1 of freely moving mice while simultaneously measuring the mouse's eye position, head orientation, and the visual scene from the mouse's perspective. From these measures, we mapped spatiotemporal receptive fields during free movement based on the gaze-corrected visual input. Furthermore, we found a significant fraction of neurons tuned for eye and head position, and these signals were integrated with visual responses through a multiplicative mechanism in the majority of modulated neurons. These results provide new insight into coding in the mouse V1 and, more generally, provide a paradigm for investigating visual physiology under natural conditions, including active sensing and ethological behavior.


Assuntos
Camundongos , Animais
12.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125119

RESUMO

In natural contexts, sensory processing and motor output are closely coupled, which is reflected in the fact that many brain areas contain both sensory and movement signals. However, standard reductionist paradigms decouple sensory decisions from their natural motor consequences, and head-fixation prevents the natural sensory consequences of self-motion. In particular, movement through the environment provides a number of depth cues beyond stereo vision that are poorly understood. To study the integration of visual processing and motor output in a naturalistic task, we investigated distance estimation in freely moving mice. We found that mice use vision to accurately jump across a variable gap, thus directly coupling a visual computation to its corresponding ethological motor output. Monocular eyelid suture did not affect gap jumping success, thus mice can use cues that do not depend on binocular disparity and stereo vision. Under monocular conditions, mice altered their head positioning and performed more vertical head movements, consistent with a shift from using stereopsis to other monocular cues, such as motion or position parallax. Finally, optogenetic suppression of primary visual cortex impaired task performance under both binocular and monocular conditions when optical fiber placement was localized to binocular or monocular zone V1, respectively. Together, these results show that mice can use monocular cues, relying on visual cortex, to accurately judge distance. Furthermore, this behavioral paradigm provides a foundation for studying how neural circuits convert sensory information into ethological motor output.


Assuntos
Sinais (Psicologia) , Visão Monocular , Animais , Percepção de Profundidade , Movimentos da Cabeça , Camundongos , Visão Binocular
13.
Curr Biol ; 32(10): R482-R493, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35609550

RESUMO

The breadth and complexity of natural behaviors inspires awe. Understanding how our perceptions, actions, and internal thoughts arise from evolved circuits in the brain has motivated neuroscientists for generations. Researchers have traditionally approached this question by focusing on stereotyped behaviors, either natural or trained, in a limited number of model species. This approach has allowed for the isolation and systematic study of specific brain operations, which has greatly advanced our understanding of the circuits involved. At the same time, the emphasis on experimental reductionism has left most aspects of the natural behaviors that have shaped the evolution of the brain largely unexplored. However, emerging technologies and analytical tools make it possible to comprehensively link natural behaviors to neural activity across a broad range of ethological contexts and timescales, heralding new modes of neuroscience focused on natural behaviors. Here we describe a three-part roadmap that aims to leverage the wealth of behaviors in their naturally occurring distributions, linking their variance with that of underlying neural processes to understand how the brain is able to successfully navigate the everyday challenges of animals' social and ecological landscapes. To achieve this aim, experimenters must harness one challenge faced by all neurobiological systems, namely variability, in order to gain new insights into the language of the brain.


Assuntos
Encéfalo , Neurociências , Animais , Idioma
14.
Front Neurosci ; 16: 834701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360159

RESUMO

Attention is a necessary component in many forms of human and animal learning. Numerous studies have described how attention and memory interact when confronted with a choice point during skill learning. In both animal and human studies, pathways have been found that connect the executive and orienting networks of attention to the hippocampus. The anterior cingulate cortex, part of the executive attention network, is linked to the hippocampus via the nucleus reuniens of the thalamus. The parietal cortex, part of the orienting attention network, accesses the hippocampus via the entorhinal cortex. These studies have led to specific predictions concerning the functional role of each pathway in connecting the cortex to the hippocampus. Here, we review some of the predictions arising from these studies. We then discuss potential methods for manipulating the two pathways and assessing the directionality of their functional connection using viral expression techniques in mice. New studies may allow testing of a behavioral model specifying how the two pathways work together during skill learning.

15.
PLoS One ; 17(4): e0265685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35385490

RESUMO

Controlled assembly of retinal cells on artificial surfaces is important for fundamental cell research and medical applications. We investigate fractal electrodes with branches of vertically-aligned carbon nanotubes and silicon dioxide gaps between the branches that form repeating patterns spanning from micro- to milli-meters, along with single-scaled Euclidean electrodes. Fluorescence and electron microscopy show neurons adhere in large numbers to branches while glial cells cover the gaps. This ensures neurons will be close to the electrodes' stimulating electric fields in applications. Furthermore, glia won't hinder neuron-branch interactions but will be sufficiently close for neurons to benefit from the glia's life-supporting functions. This cell 'herding' is adjusted using the fractal electrode's dimension and number of repeating levels. We explain how this tuning facilitates substantial glial coverage in the gaps which fuels neural networks with small-world structural characteristics. The large branch-gap interface then allows these networks to connect to the neuron-rich branches.


Assuntos
Fractais , Nanotubos de Carbono , Eletrodos , Nanotubos de Carbono/química , Neuroglia , Neurônios
16.
Annu Rev Neurosci ; 44: 517-546, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914591

RESUMO

The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.


Assuntos
Córtex Visual , Animais , Camundongos , Neurônios , Estimulação Luminosa
17.
Neural Dev ; 15(1): 13, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160402

RESUMO

BACKGROUND: Developing cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown. METHODS: Here we block nectin-3 expression (via shRNA) or overexpress nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35). RESULTS: Knockdown of nectin-3 beginning at E15.5 or ~ P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length nectin-3 at E15.5 decreased dendritic spine densities when all ages were considered together. The effects of nectin-3 knockdown and overexpression on dendritic spine densities were most significant on proximal secondary apical dendrites. Interestingly, an even greater decrease in dendritic spine densities, particularly on basal dendrites at P21, was observed when we overexpressed nectin-3 lacking its afadin binding domain. CONCLUSION: These data collectively suggest that the proper levels and functioning of nectin-3 facilitate normal synapse formation after eye opening on apical and basal dendrites in layer 2/3 of visual cortex.


Assuntos
Espinhas Dendríticas/fisiologia , Nectinas/metabolismo , Sinapses/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Elife ; 92020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32706335

RESUMO

Many studies of visual processing are conducted in constrained conditions such as head- and gaze-fixation, and therefore less is known about how animals actively acquire visual information in natural contexts. To determine how mice target their gaze during natural behavior, we measured head and bilateral eye movements in mice performing prey capture, an ethological behavior that engages vision. We found that the majority of eye movements are compensatory for head movements, thereby serving to stabilize the visual scene. During movement, however, periods of stabilization are interspersed with non-compensatory saccades that abruptly shift gaze position. Notably, these saccades do not preferentially target the prey location. Rather, orienting movements are driven by the head, with the eyes following in coordination to sequentially stabilize and recenter the gaze. These findings relate eye movements in the mouse to other species, and provide a foundation for studying active vision during ethological behaviors in the mouse.


As you read this sentence, your eyes will move automatically from one word to the next, while your head remains still. Moving your eyes enables you to view each word using your central ­ as opposed to peripheral ­ vision. Central vision allows you to see objects in fine detail. It relies on a specialized area of the retina called the fovea. When you move your eyes across a page, you keep the images of the words you are currently reading on the fovea. This provides the detailed vision required for reading. The same process works for tracking moving objects. When watching a bird fly across the sky, you can track its progress by moving your eyes to keep the bird in the center of your visual field, over the fovea. But the majority of mammals do not have a fovea, and yet are still able to track moving targets. Think of a lion hunting a gazelle, for instance, or a cat stalking a mouse. Even mice themselves can track and capture insect prey such as crickets, despite not having a fovea. And yet, exactly how they do this is unknown. This is particularly surprising given that mice have long been used to study the neural basis of vision. By fitting mice with miniature head-mounted cameras, Michaiel et al. now reveal how the rodents track and capture moving crickets. It turns out that unlike animals with a fovea, mice do not use eye movements to track moving objects. Instead, when a mouse wants to look at something new, it moves its head to point at the target. The eyes then follow and 'land' on the target. In essence, head movements lead the way and the eyes catch up afterwards. These findings are consistent with the idea that mammals with large heads evolved eye movements to overcome the energy costs of turning the head whenever they want to look at something new. For small animals, moving the head is less energetically expensive. As a result, being able to move the eyes independent of the head is unnecessary. Future work could use a combination of behavioral experiments and brain recordings to reveal how visual areas of the brain process what an animal is seeing in real time.


Assuntos
Movimentos Oculares , Percepção Visual , Animais , Feminino , Cabeça , Masculino , Camundongos Endogâmicos C57BL , Movimento , Comportamento Predatório
19.
Trends Neurosci ; 43(8): 581-595, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32580899

RESUMO

Recent studies have demonstrated prominent and widespread movement-related signals in the brain of head-fixed mice, even in primary sensory areas. However, it is still unknown what role these signals play in sensory processing. Why are these sensory areas 'contaminated' by movement signals? During natural behavior, animals actively acquire sensory information as they move through the environment and use this information to guide ongoing actions. In this context, movement-related signals could allow sensory systems to predict self-induced sensory changes and extract additional information about the environment. In this review we summarize recent findings on the presence of movement-related signals in sensory areas and discuss how their study, in the context of natural freely moving behaviors, could advance models of sensory processing.


Assuntos
Movimento , Sensação , Animais , Encéfalo , Cognição , Camundongos
20.
Vision (Basel) ; 3(1)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31735805

RESUMO

Human neuroimaging has revealed brain networks involving frontal and parietal cortical areas as well as subcortical areas, including the superior colliculus and pulvinar, which are involved in orienting to sensory stimuli. Because accumulating evidence points to similarities between both overt and covert orienting in humans and other animals, we propose that it is now feasible, using animal models, to move beyond these large-scale networks to address the local networks and cell types that mediate orienting of attention. In this opinion piece, we discuss optogenetic and related methods for testing the pathways involved, and obstacles to carrying out such tests in rodent and monkey populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...